

1

Use of Open-source Mathematics Software in
degree level courses at Sheridan College

Content delivery, assessment and evaluation

Victor Ralevich, Ph.D.
Sheridan College, Oakville, Ontario, Canada

THE ROLE OF TECHNOLOGY IN ASSESSMENT AND EVALUATION OF MATHEMATICS LEARNING
FIELDS MATHEMATICS EDUCATION FORUM

February 25, 2012, Fields Institute, 222 College Street, Toronto

2

Introduction

Brief overview of mathematics software, with the emphasis
on use of free and open-source software platform SAGE in
some of the advanced courses taught at the Sheridan
College, Ontario.

We use SAGE for:

Meaningful non-trivial exercises courses such as:

- Algorithms and data structures
- CPU architecture
- Introduction to Cryptology
- Advanced Cryptology, etc.

3

Bachelor of Applied Information Sciences (Information
Systems Security) program includes in its curriculum:

- Number theory (divisibility, primality testing, Euler totient
function, congruencies, simultaneous congruency
equations, pseudoprimality testing on large numbers)

- Abstract algebra (groups, rings, integral domains, fields,
finite, polynomials over finite fields)

- Complexity theory

- Information theory

4

Particularly sensitive and complex topics which cannot be
covered properly without use of more mathematics software:

 Efficient implementation of multiple precision arithmetic

computation with large integers, and in Zm

 Use in RSA, AES, ECC, ElGamal and other

cryptographic algorithms

 Fast exponentiation of large integers (modulo n)

 Probabilistic primality testing (Miller-Rabin, etc)

 Discrete fast Fourier transforms

5

What Math Software is Available and Useful?

Magma

Software to Solve Computationally Hard Problems in Pure
Mathematics

Origins: 1973 as Cayley, then renamed Magma in 1993.
University setting – not a company. Not for profit.

Mission: “Develop computer techniques for solving symbolic
problems in mathematics, with particular emphasis on the
areas of algebra, number theory and geometry.”

Funding: Australian Research Council and License Fees
List price: The educational price is $1150 per copy.

6

Maple

Maple is a general-purpose
commercial computer algebra
system. It was first developed
in 1980 by the Symbolic
Computation Group at the
University of Waterloo in
Waterloo, Ontario, Canada.

Since 1988, it has been
developed and sold
commercially by Waterloo Maple Inc. (also known as
Maplesoft), a Canadian company also based in Waterloo,
Ontario. The current major version is version 15 which was
released in April 2011.

7

Maple - Screenshot

8

MathCad

Was the first to introduce
live editing of typeset
mathematical notation,
combined with its
automatic computations.

Mathcad includes some
of the capabilities of a
computer algebra
system but is primarily
oriented towards ease of
use and numerical
engineering applications.

9

Mathematica

 Mathematica is a computational software program used

in scientific, engineering, and mathematical fields and
other areas of technical computing.

 It was conceived by Stephen Wolfram and is developed

by Wolfram Research of Champaign, Illinois.

 List price: $2,495/copy; $1095/copy for professors;

$139.95/copy for students; $1,995/copy for government
employees.

10

Mathematica Screenshot

11

GNU Octave

 Origins: Started in January 2005 by William Stein by

combining together the open source programs PARI,
Maxima, Python, Singular and GAP.

 Mission statement: “Create a viable open source free
alternative to Magma, Maple, Mathematica, and MATLAB
which uses a standard modern language.”

 List price: $0
 Volunteers: About 50, with at least 20 regular

contributors.
 Annual budget: Currently about $50K.
 Estimated number of users: Between 200 and 1000.

12

Octave - Screenshot

13

Sage

 Sage is an open source computer algebra system that

supports teaching, study and research in mathematics.

 Its features cover many aspects of mathematics, including

algebra, combinatorics, numerical mathematics, number
theory, and calculus.

 It combines numerous open source packages and provides

access to their functionalities via a common interface,
namely, a Python based programming language supporting
procedural, functional and object-oriented constructs..

14

 Sage can be used as a powerful desktop calculator, as a
tool to help undergraduate students study mathematics, or
as a programming environment for prototyping algorithms
and research in algorithmic aspects of mathematics.

 Sage is available free of charge and can be downloaded
from the following website:

http://www.sagemath.org

 The starter and leader of the Sage project, William Stein, is

a mathematician at the University of Washington.

15

 Two modes of operation:

o Downloadable install version for Linux or Oracle VM

Virtualbox for MS Windows, or

o Online command line or as Sage Notebook

 The default interface to Sage is command line based, but

there is a graphical user interface to the software as well in
the form of the Sage notebook.

16

Sage – Screenshot (graphics plotting)

17

Sage – Screenshot (typeset)

18

Sage Features

 Sage is built out of nearly 100 open-source packages and

features a unified interface.

 Sage can be used to study elementary and advanced, pure

and applied mathematics.

 This includes a huge range of mathematics, including basic

algebra, calculus, elementary to very advanced number
theory, cryptography, numerical computation, commutative
algebra, group theory, combinatorics, graph theory, exact
linear algebra and much more.

19

Using the Sage shell – Random Examples

sage: integral(x*sin(x^2), x)
-1/2*cos(x^2)

sage: integral(x/(x^2+1), x, 0, 1)
1/2*log(2)

sage: [sqrt(i) for i in srange(0,10,.1)]

sage: plot(sin,0,2)+plot(cos,0,2,rgbcolor=’red’)

20

Elementary Number Theory Examples

sage: primes_first_n(20)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61,
67, 71]
sage: gcd(18, 27)
9
sage: mod(23, 5)
3
sage: euler_phi(20)
8

sage: factorial(50)
30414093201713378043612608166064768844377641
568960512000000000000L

21

Generating pair of keys for RSA

1. Choose two primes p and q and let n = pq.

2. Let ݁ ∈ Ժ, ݁ 0, gcd൫݁, ߮ሺ݊ሻ൯ ൌ 1.

3. Compute a values for ݀ ∈ Ժ, ݀ 0, ݀݁ ≡ 1 ሺ݉݀ ߮ሺ݊ሻሻ.

4. Public key is the pair (n, e) and private key is (p, q, d).

5. For any two non-zero integer m<n, encrypt m using
ܿ ≡ ݉ሺ݉݀ ݊ሻ.

6. Decrypt c using ݉ ≡ ܿௗሺ݉݀ ݊ሻ.

22

Use of Sage to generate RSA keys (example)

If p is prime and Mp = 2p − 1 is also prime, then Mp is called a
Mersenne prime. For example, for primes p = 31 and p = 61,
Mp are Mersenne primes.

sage: p = (2^31) - 1
sage: is_prime(p)
True
sage: q = (2^61) - 1
sage: is_prime(q)
True
sage: n = p * q ; n
4951760154835678088235319297

23

A word of warning: choice of p and q as Mersenne primes,
and with so many digits far apart from each other, is a very
bad choice in terms of cryptographic security.

sage: e = ZZ.random_element(euler_phi(n))
sage: while gcd(e, euler_phi(n)) != 1:
....: e = ZZ.random_element(euler_phi(n))
....:
sage: e
1850567623300615966303954877
sage: e < n
True
sage: bezout = xgcd(e, euler_phi(n)) ; bezout
(1, 4460824882019967172592779313, -
1667095708515377925087033035)
sage: d=Integer(mod(bezout[1],euler_phi(n))) ; d
4460824882019967172592779313
sage: mod(d * e, euler_phi(n))

24

In this example RSA public key is:

(n, e) = (4951760154835678088235319297,

 1850567623300615966303954877)

and private key is:

(p, q, d) = (2147483647, 2305843009213693951,
 4460824882019967172592779313)

25

Example of Sage programming

Find two numbers, both greater than 100,000 that have a greatest
common divisor of exactly 3.

sage: while (p < 100000): p = random_prime(1000000)
....:
sage: p
586139
sage: q = 1
sage: while (q < 100000): q = random_prime(1000000)
....:
sage: q
938591
sage: A = 3*p
sage: B = 3*q
sage: xgcd(A,B)
(3, -380028, 237323)

26

How do we use Sage for evaluation?

1. In-class exercises

2. Homework and assignments

3. Group projects that involve use of Sage or similar tools

27

 Use of laptop during exams is not possible – we cannot
isolate and control environment.

 Major concern may be – network communication among

students in real-time.

 For the purpose of homework and projects, plagiarism

among students is easy to recognize.

 Plagiarism accomplished by downloading solutions from

the Web is virtually impossible to detect or prove.

28

Thank you!

Questions?

My contact information:

victor.ralevich@sheridanc.on.ca

