Medical Image Processing Using Transforms

Hongmei Zhu, Ph.D Department of Mathematics & Statistics York University hmzhu@yorku.ca

MRcenter.ca

2

Outline

- •Image Quality
- •Gray value transforms
- •Histogram processing
- •Filters in image space
- •Filters in Fourier space
- •Filters in Time-frequency space

5. Filters in time-frequency space

5.1. Time-Frequency analysis

Fields, 08, Zhu

Most signals are non-stationary

Finite duration

7

8

9

Time/Spatial varying

Corrupted by noise

How can we characterize a signal simultaneously in time and frequency?

---- the aim of time-frequency analysis

Atomic decomposition

Linearly decompose a signal over a set of elementary "building blocks" which would be reasonably 'localized" in both time and frequency

$$
\lambda_f(\tau, k) = \int_{-\infty}^{+\infty} f(t) \tilde{b}_{\tau, k}^*(t) dk
$$

$$
f(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \lambda_f(\tau, k) b_{\tau, k}(t) d\tau dk
$$

where $\tilde{b}^*_{\tau,k} \left(\boldsymbol{\cdot} \right)$ is some analysis fucntion deduced from the "synthesis" function $b_{\varepsilon, k} \left(\boldsymbol{\cdot} \right)$, making $\lambda_{_f} \left(\tau, k \right)$ a (linear) time-frequency representation of $f(t)$.

The Gabor Transform (1946)

Also called the short-time or windowed FT

$$
G(\tau,k)=\int_{-\infty}^{+\infty}f(t)w^{*}(t-\tau)exp(-i2\pi kt)dt
$$

where, e.g., w can be the Gaussian function

$$
w(t-\tau) = \frac{1}{\sqrt{2\pi b^2}} \exp\left(-\frac{(t-\tau)^2}{2b^2}\right)
$$

Heisenberg Inequality

Also called the Uncertainty Principle: Resolution in time and frequency cannot be arbitrarily small, because their product is bounded below: $\Delta t \cdot \Delta k \geq \frac{1}{4}$ ⁴^π **Here, given the window functions Here, given the window functions** $\mathbb{F}^{\text{FT}} \rightarrow W(k)$, ∆*t* $2=\frac{\int t^2 \big|w(t)\big|^2 dt}{\int_{0}^{t^2} dx}$ \int $\left| w(t) \right|^2 dt$ $\Delta k^2 = \frac{\int k^2 |W(k)|^2 dk}{\int k^2 |W(k)|^2}$ $\int \big|W\left(k\right)\big|^{2}dk$

$$
\begin{array}{|c|c|c|c|}\hline \hline \multicolumn{3}{|c|}{\hline} \multicolumn{
$$

Next Step

$$
\Delta t \cdot \Delta k \ge \frac{1}{4\pi}
$$

There always is a trade off between ∆**t and** ∆**k.**

Fortunately, many signals consist of low frequencies of long duration and/or high frequencies of short duration

The next logical step is to use a windowing technique with variable sizes: long time window for better ∆**k at low frequencies, short time window for better** ∆**t at highfrequencies.**

13

14

15

The Continuous Wavelet Transform (CWT)

The CWT decomposes a signal into the scaled and shifted replica of the Mother wavelet (a waveform of effectively limited duration and zero mean)

The Continuous Wavelet Transform

Wavelets: small waves (1984)

$$
CW(\tau,s) = \frac{1}{\sqrt{|s|}} \int_{-\infty}^{+\infty} f(t) w^* \left(\frac{t-\tau}{s} \right) dt
$$

where $\sqrt{\frac{1}{s}} \sqrt{\frac{s}{s}}$ is the scaled and shifted replica *s* $w\left(\frac{t-\tau}{\tau}\right)$ $\sqrt{ }$ $\left(\frac{t-\tau}{s}\right)$

of the Mother wavelet, a waveform satisfying

$$
c_{w} = \int_{-\infty}^{+\infty} \frac{\left|W\left(k\right)\right|^{2}}{k} dk < \infty
$$

Effectively, $W(0) = 0$ and $W(k) \rightarrow 0$ as $k \rightarrow \infty$

$$
\begin{array}{|c|c|c|}\hline \multicolumn{3}{|c|}{\hline} \multicolumn{3}{|c|
$$

The Stockwell Transform

$$
S(\tau,k) = \int_{-\infty}^{+\infty} f(t) g\left(t - \tau, 1/\left|k\right|\right) \exp\left(-i2\pi kt\right) dt
$$

where the window function g is the Gaussian function with frequency-dependent window width,

$$
g(t-\tau, 1/k) = \frac{|k|}{\sqrt{2\pi}} \exp\left(-\frac{(t-\tau)^2 k^2}{2}\right)
$$

18

Stockwell (1996) IEEE T Signal Processing, V44

The ST and Morlet wavelets

With the complex Morlet mother wavelet

$$
\psi^{\nu_0}(t) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) \exp\left(i2\pi\nu_0 t\right),\,
$$

the Morlet wavelet transform (MWT) is defined as

$$
MW(\tau,a) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{+\infty} f(t) \psi^{v_0*}\left(\frac{t-\tau}{a}\right) dt.
$$

where $a = \frac{V_0}{I}$. We can show that $a = \frac{v_0}{k}$

$$
S\left(\tau,k\right)\!=\!\sqrt{k}\;e^{i2\pi k\tau}M_{\left.\nu\right|}\!\left(\tau,\!\frac{1}{k}\right)\!.\quad \substack{\text{Du, Wong, Zhu (2006)} \\ \text{Gibson, Lamoureux, Mary}}
$$

20

21

e (2006)

$$
\begin{array}{|c|c|c|}\hline \hline \multicolumn{3}{|c|}{\hline} \multicolumn{3}{
$$

The ST and Morlet wavelets

(a) Small oscillations occur for small frequencies (b) The absolute referenced phase information is retained in the ST, while the MWT gives relative referenced phase information. Liu, Zhu (2007)

- Analyze the raw signal in the (τ, *k*) domain to identify its local characteristics
- Remove noise from signal or separate and analyze specific components
- Extract Features from its time-frequency representation

23

• Extension to two or higher dimensions; ...

Correct motion artifacts in fMRI

fMRI Signal

- ≤ 5% of collected MR data is related to neural activities triggered by fMRI experiment
- Limited data is also corrupted by noise

How can we correct unpredictable motion artifacts to improve the accuracy and reproducibility in fMRI analysis?

Filtering using wavelet transforms

Wavelet-based Wiener Filter

36

Wavelet Transform-Based Wiener Filtering
of Event-Related fMRI Data shen M. LaConto, Shi

Supplies M. LaConies, Shing-Ghuna Nash, and Xiseping Hun

and Nash and Xiseping Hun

and Nash and Xiseping Hunder and The advertorial material functional magnetic resonance im-

aping (fMRI) has resulted in many exciting

Wavelet-based Wiener Filter

In the wavelet domain, the desired Wiener filter takes the form:

$$
H(j, n) = \frac{P_x(j, n)}{P_x(j, n) + P_y(j, n)}
$$

37

 $[13]$

where $P_x(j,n)$ is the power density corresponding to the detailed component of true signal x in location *n* at resolution level *j*. $P_y(j,n)$ is the corresponding term of the noise.

$$
\begin{array}{|c|c|c|c|}\hline \multicolumn{3}{|c|}{\hline} \multicolumn{3}{|
$$

Dual Tree Complex Wavelet based Regularized Deconvolution for Medical Images

 $\begin{minipage}[c]{. \begin{minipage}[c]{0.9\linewidth} \begin{subipage}[c]{0.9\linewidth} \begin{subipage}[c]{0.9\linewidth} \begin{subipage}[c]{0.9\linewidth} \end{subipage}[c]{0.9\linewidth} \begin{subipage}[c]{0.9\linewidth} \begin{subipage}[c]{0.9\linewidth} \begin{subipage}[c]{0.9\linewidth} \end{subipage}[c]{0.9\linewidth} \begin{subipage}[c]{0.9\linewidth} \begin{subipage}[c]{0.9\linewidth} \end{subipage}[c]{0.9\linewidth} \begin{subipage}[c]{0.9\linewidth} \begin{subipage}[c]{0.9\linewidth}$

Sharpening Enhancement of Digitized Mammograms with Complex Symmetric Daubechies Wavelets'

 ${1.333}_{\rm Pbys.~Depth,~Link.~de\,Motraf,~C.P.~6128~Succ.~Catter-Ville,~Moutréal(Qoéhec),~HSC~3J7,~Canada~3.4tlandic Nuclear Services~Ld.,~Fredericon, New Brunswick, E3B 5Cs, Canada~annit:~[gggoo@lpsumontreal.ca$$