A Class of Interpretable and Decomposable Multi-period Convex Risk Measures
Multi-period risk measures evaluate the risk of a stochastic process by assigning it a scalar value. A desirable property of these measures is dynamic decomposition, which allows the risk evaluation to be expressed as a dynamic program. However, many widely used risk measures, such as Conditional Value-at-Risk, do not possess this property. In this work, we introduce a novel class of multi-period convex risk measures that do admit dynamic decomposition. Our proposed risk measure evaluates the worst-case expectation of a random outcome across all possible stochastic processes, penalized by their deviations from a nominal process in terms of both the likelihood ratio and the outcome. We show that this risk measure can be reformulated as a dynamic program, where, at each time period, it assesses the worst-case expectation of future costs, adjusting by reweighting and relocating the conditional nominal distribution. This recursive structure enables more efficient computation and clearer interpretation of risk over multiple periods. This is joint work with Rui Gao and Jincheng Yang.