Fast computation of the eigenvalues of diagonal plus semiseparable matrices
We present a fast implementation of a recently proposed speech compression scheme, based on an all-pole model of the vocal tract. Each frame of the speech signal is analyzed by storing the parameters of the complex damped exponentials deduced from the all-pole model and its initial conditions. In mathematical terms, the analysis stage corresponds to solving a structured total least squares (STLS) problem. It is shown that by exploiting the displacement rank structure of the involved matrices the STLS problem can be solved in a very fast way. Synthesis is computationally very cheap since it consists of adding the complex damped exponentials based on the transmitted parameters. The compression scheme is applied on a speech signal. The speed improvement of the fast vocoder analysis scheme is demonstrated. Furthermore, the quality of the compression scheme is comparable with that of a standard coding algorithm at comparable compression ratios, by using the segmental Signal-to-Noise Ratio (SNR).