Impact of an Energy Conserving Scheme in the CSU Geodesic-Grid AGCM
This talk will review a new dynamical formulation of the governing equations that has recently been implemented into the CSU AGCM. The new dynamical formulation is characterized by its conservation of mass, tracers, and total energy. Furthermore, the formulation exhibits a consistency between the momentum form of the governing equations and the vorticity-divergence form of the equations.
We will compare simulations that use this new dynamics package to simulations that use an older formulation. We will compare and contrast the results in terms of energy and enstrophy spectra. Furthermore, using a full physics AGCM, we will show that the new formulation leads to an changes not only in the dynamical fields, but also in the parameterized fields such a precipitation and cloud cover.
We have extended the new dynamical scheme to include the discretization of second order tensors by extending the definition of the discrete gradient operator to operate on vectors, as well as scalars. In addition, we have developed a conservative form of the divergenceof second order tensors. We will present results on the impact of this discretization in simulations of the 2-D turbulence.