Microlocal Analysis of Medical Images: Applications in Cancer Imagenomics
Our expanding knowledge of the genetic basis and molecular mechanisms of cancer is beginning to revolutionize the practice of oncology. In fact, personalized medicine, using molecular biomarkers to classify tumors and direct treatment decisions profiles, is becoming the new standard of care. Unfortunately, genomic testing is invasive, costly, and time consuming. In addition, different regions of the same tumor, or the primary and metastatic tumors, can have widely variable genetic signatures. Therefore, a single biopsy in only one area of the tumor may provide an incomplete assessment. Global assessment of tumors for genomic analysis would be preferred but is limited due to high cost and practical limitations in obtaining multiple biopsies.
Noninvasive global tumor assessment, however, is possible with imaging such as Computed Tomography (CT), Magnetic Resonance (MR) or Positron Emission Tomography (PET). The emerging field of "imagenomics" is focused on identifying imaging traits that correlate with genetics. If successfully validated, and proven to have suitable sensitivity and specificity, the use of imagenomics tests could complement conventional surgical biopsies. For example, this could be important in the context of large heterogeneous lesions, multiple lesions, surgically inaccessible lesions, and settings where disease progression needs to be monitored frequently over time.
The Medical Imaging Informatics research group at the Mayo Clinic is developing and applying microlocal analyses of medical images to improve cancer imagenomics. This presentation will discuss some of our recent efforts and results in this area.